Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 555(7697): 463-468, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539633

RESUMO

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.


Assuntos
Perda do Embrião/genética , Perda do Embrião/patologia , Mutação , Placenta/patologia , Placentação/genética , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Células-Tronco/metabolismo , Células-Tronco/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia
3.
Stem Cells Dev ; 24(16): 1865-77, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26125289

RESUMO

MYSM1 is a chromatin-interacting deubiquitinase recently shown to be essential for hematopoietic stem cell (HSC) function and normal progression of hematopoiesis in both mice and humans. However, it remains unknown whether the loss of function in Mysm1-deficient HSCs is due to the essential role of MYSM1 in establishing the HSC pool during development or due to a continuous requirement for MYSM1 in adult HSCs. In this study we, for the first time, address these questions first, by performing a detailed analysis of hematopoiesis in the fetal livers of Mysm1-knockout mice, and second, by assessing the effects of an inducible Mysm1 ablation on adult HSC functions. Our data indicate that MYSM1 is essential for normal HSC function and progression of hematopoiesis in the fetal liver. Furthermore, the inducible knockout model demonstrates a continuous requirement for MYSM1 to maintain HSC functions and antagonize p53 activation in adult bone marrow. These studies advance our understanding of the role of MYSM1 in HSC biology, and provide new insights into the human hematopoietic failure syndrome resulting from MYSM1 deficiency.


Assuntos
Endopeptidases/genética , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Animais , Células Cultivadas , Endopeptidases/metabolismo , Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transativadores , Proteases Específicas de Ubiquitina
4.
Plant Dis ; 90(2): 233-239, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30786419

RESUMO

Big vein is an economically damaging disease of lettuce (Lactuca sativa) caused by the Olpidium brassicae-vectored Mirafiori lettuce big-vein virus (MLBVV). Lettuce big-vein associated virus (LBVaV) is also frequently identified in symptomatic plants, but no causal relationship has been demonstrated. Although big vein is a perennial problem in the United States, the extent of MLBVV and LBVaV infection and diversity is unknown. Lettuce cultivars partially resistant to big vein reduce losses, but do not eliminate disease. While Lactuca virosa does not develop big vein symptoms, it has not been tested for infection with MLBVV or LBVaV. Lettuce cultivars Great Lakes 65, Pavane, Margarita, and L. virosa accession IVT280 were evaluated for big vein incidence and virus infection in inoculated greenhouse trials. Additional lettuce samples were collected from field sites in California, classified for symptom severity, and evaluated for virus infection. Reverse transcription-polymerase chain reaction and nucleotide sequencing were used to determine infection with MLBVV and LBVaV, and sequence diversity among viral isolates, respectively. Infections with MLBVV and MLBVV/LBVaV were dependent on big vein symptom expression in California production areas, and isolates were closely related to those found in Europe and Japan. Partial big vein resistance was identified in Margarita and Pavane; however, MLBVV infection was found in asymptomatic plants. L. virosa IVT280 remained symptomless and virus free, suggesting that it is immune to MLBVV and LBVaV.

5.
Theor Appl Genet ; 110(2): 259-68, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15672259

RESUMO

A diverse collection of modern, heirloom and specialty cultivars, plant introduction (PI) accessions, and breeding lines of lettuce were screened for susceptibility to lettuce dieback, which is a disease caused by soilborne viruses of the family Tombusviridae. Susceptibility was evaluated by visual symptom assessment in fields that had been previously shown to be infested with Lettuce necrotic stunt virus. Of the 241 genotypes tested in multiple field experiments, 76 remained symptom-free in infested fields and were therefore classified as resistant to dieback. Overall, resistant genotypes were as prevalent among modern cultivars as in heirloom cultivars or primitive germplasm. Within modern germplasm, however, all crisphead (iceberg) cultivars were resistant, while all romaine cultivars were susceptible. Using enzyme-linked immunosorbent assay, tombusviruses were detected in leaves of some plants of resistant genotypes that were grown in infested fields, suggesting that symptom-free plants are not immune to viral infection. The inheritance of resistance was studied for 'Salinas', a modern iceberg cultivar, and PI 491224, the progenitor of recently released romaine germplasm with resistance to lettuce dieback. Resistance was conferred by a dominant allele at a single locus in both genotypes. The tombusvirus resistance locus from 'Salinas', Tvr1, was mapped in an intraspecific Lactuca sativa population to a location that corresponds to linkage group 2 on the consensus map of Lactuca. The largest cluster of resistance genes in lettuce, the Dm1/Dm3 cluster, is found on this linkage group; however, the precise position of Tvr1 relative to this cluster has not yet been determined. To our knowledge, Tvr1 is the first tombusvirus resistance gene identified for any plant host.


Assuntos
Genes de Plantas , Imunidade Inata/genética , Lactuca/genética , Lactuca/virologia , Doenças das Plantas/virologia , Tombusvirus/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Microbiologia do Solo , Tombusvirus/isolamento & purificação
6.
Plant Dis ; 89(3): 317-324, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30795356

RESUMO

The seed transmission of Verticillium dahliae was evaluated in lettuce (Lactuca sativa). Seed collected from lettuce plants infected with V. dahliae were plated with or without surface sterilization on Sorenson's modified NP10 medium. Of the seed plated with or without surface sterilization, 90 and 66%, respectively, yielded colonies of V. dahliae. The incidence of Verticillium wilt ranged from 55 to 80% among lettuce plants grown from seed harvested from infected plants. All evaluated isolates of V. dahliae were capable of seed transmission in lettuce. A V. tricorpus isolate failed to cause significant disease in lettuce or to become seedborne. Storage of contaminated seed at seven temperatures ranging from -20 to 15°C for up to 72 weeks did not reduce the incidence of V. dahliae in seed, whereas storage at room temperature (23 ± 2°C) for 20 to 52 weeks reduced the incidence of V. dahliae without affecting seed viability. Of the 11 weed species collected from fields with a known history of Verticillium wilt of lettuce, four yielded V. dahliae. Pathogenicity tests demonstrated that isolates of V. dahliae from Sonchus oleraceus, Capsella bursa-pastoris, and Solanum sarrachoides were as virulent as or more virulent than an isolate of V. dahliae from lettuce. These results demonstrate the potential of seedborne and weedborne inoculum to disseminate V. dahliae.

7.
J Exp Bot ; 54(385): 1259-68, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654877

RESUMO

A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.


Assuntos
Topos Floridos/crescimento & desenvolvimento , Gravitropismo/fisiologia , Hipocótilo/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento , Topos Floridos/citologia , Topos Floridos/genética , Teste de Complementação Genética , Gravitropismo/genética , Hipocótilo/citologia , Hipocótilo/genética , Lactuca/citologia , Lactuca/genética , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...